Test no. VZOR01

The set of all solutions of	of the equation $2^{ z }$	x+3 < 2 with	the unknown	$x \in R \text{ is}$		(1
a) $(-\infty, -3)$,	b) ∅,			c) $(-4, -2)$),	
d) $(-\infty, -4) \cup (2, 8)$	e) (-	$-4, -2\rangle.$				
The domain of the funct	$f(x) = \frac{x}{\sin x}$	is				(1
a) $(-\infty, \infty)$,			b) the same	as the domain	$n of g(x) = \tan x,$	
c) $\bigcup_{k \in 7} [k\pi, (k+1)\pi),$			$\mathrm{d}) \bigcup_{k \in Z} [2k\pi,$	$(2k+1)\pi),$		
e) the same as the de	omain of $g(x) = cc$	ot x.	κ∈Ζ			
Assuming that $\sin \alpha \cdot \cos \alpha$	$os \alpha = \frac{1}{2} \text{ and } \alpha \in ($	π , 2π), the v	alue of $\tan(\pi)$	$-\alpha$)		(1
a) is not defined,	b) is positive,	c) is 0,	d) i	s - 1,	e) is $\frac{3}{4}\pi$.	
In the interval $[0, 2\pi]$, the interval $[0, 2\pi]$	ne equation $\sin x =$	$=\cos x - 1$ has	5			(1
a) exactly two solutions d) exactly three solu	,	actly one solution.	ition,	c) infinitely	many solution,	
The algebraic form of the	e complex number	$z = \frac{1+i}{1+2i}$	is			(1
a) $\frac{2}{5}$,	b) $\frac{3}{5} - \frac{1}{5}i$,	c) $1 + \frac{1}{2}i$,	d) {	$\frac{2}{3}$ i,	e) 1 + i.	
The number y determine	ed by the equation	$\log_2 y = 3\log$	$g_2 \frac{x-2}{2} - 2$	$\log_2 \frac{x^2 - 4}{2} \text{is} $	s equal to	(1
a) $\frac{x-2}{2(x+2)^2}$,		$\frac{x-2}{2} - 2\frac{x^2-2}{2}$		c) $-x^2 + 3$	x+2,	
d) $x + 2$,	e) <u>x</u>	$\frac{-2}{6} + \frac{x^2 - 4}{4}$.				
Consider two recurrent and $a_n = 2 \cdot a_{n-1}, b_n =$	sequences $(a_n)_{n=1}^{\infty}$ $b_{n-1} + a_n$ for $n \ge 1$	and $(b_n)_{n=1}^{\infty}$ 2. Determine	given by the b_{11} .	following form	mulas: $a_1 = 3, b_1 = 0,$	(1
a) 2^{11} ,	b) $3 \cdot 2^{10}$,	c) 6138,	d) 2	2048,	e) 0.	
Four numbers were insessuccessive terms of a cer						(1
a) 140,	b) 56,	c) 29,	d) 1	.16,	e) 150.	
The expression $\frac{6x^3b^3}{25y^4}$.	$\frac{15y}{b^2}$ simplifies to					(1
a) $\frac{2x^3b^5}{75y^5}$, pokud y		∉ 0,	b) $\frac{18bx^3}{5y^3}$, p	okud $y \neq 0$	$\land \ b eq 0,$	
c) $\frac{2x^3b^5}{75y^2}$, pokud $y = \frac{1}{2}$			d) $\frac{5bx^3}{18y^3}$, po	kud $y \neq 0$,		
e) $\frac{18bx^3}{5y^3}$, pokud y	$\neq 0$.					

- **10.** The graph of the function $y = \left(\frac{1-\sqrt{x}}{\sqrt{x}-x}\right)^2$ is a part of (1 b.)
 - a) a straight line,

b) a hyperbola,

c) a parabola,

d) two non-parallel lines,

- e) two parallel lines.
- 11. The set of all solutions of the inequality $|x+5| \ge 4 + |3-2x|$ with the unknown $x \in \mathbb{R}$ is (2 b.)
 - a) $(-\infty, 8)$,
- b) [-5, 8],
- c) $(-\infty, \infty)$,
- d) Ø,
- e) $[\frac{2}{3}, 4]$.
- 12. Consider the straight lines that pass through the point A=(0,-5) and whose distance from the origin $(2\,\mathrm{b.})$ is $\sqrt{5}$. Their slopes are
 - a) 2; $\frac{1}{2}$,
- b) -3; 2,
- c) 0; 3,
- d) -2; 2,
- e) -1; 1.
- **13.** Consider the following sets: $A = \{1, 2, \dots, 1000\}$, $B = \{x \in A : \frac{x}{6} \in \mathbb{Z}\}$, $C = \{x \in A : \frac{x}{8} \in \mathbb{Z}\}$, (2 b.) $D = \{x \in A : 237 \le x \le 356\}$ (here \mathbb{Z} denotes the set of integers). How many elements does the set $(B \cap C) \cup D$ have?
 - a) 160,
- b) 125,
- c) 159,
- d) 154,
- e) 156.
- **14.** The solutions of the equation $x^2 (p+1)x + 4 = 0$ (with unknown x) are not real exactly if (2b.)
 - a) p = -1,

b) $p \in \mathbb{R}$,

c) $p \in (-5, 3)$,

- d) $p \in (-1, 4)$,
- e) $p \in (3, 5)$.
- 15. How many characters of the Morse code can be created assuming that characters are created by joining (2 b.) dots and dashes into groups of one, two, three, four or five?
 - a) 62,
- b) 64,
- c) 32,
- d) 66,
- e) 26.